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SUMMARY

Techniques for characterizing very small single-channel currents buried in background noise are
described and tested on simulated data to give confidence when applied to real data. Single channel
currents are represented as a discrete-time, finite-state, homogeneous, Markov process, and the noise that
obscures the signal is assumed to be white and Gaussian. The various signal model parameters, such as
the Markov state levels and transition probabilities, are unknown. In addition to white Gaussian noise,
the signal can be corrupted by deterministic interferences of known form but unknown parameters, such
as the sinusoidal disturbance stemming from ac interference and a drift of the base line owing to a slow
development of liquid-junction potentials. To characterize the signal buried in such stochastic and
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deterministic interferences, the problem is first formulated in the framework of a Hidden Markov Model
and then the Expectation Maximization algorithm is applied to obtain the maximum likelihood estimates
of the model parameters (state levels, transition probabilities), signals, and the parameters of the
deterministic disturbances.

Using fictitious channel currents embedded in the idealized noise, we first show that the signal
processing technique is capable of characterizing the signal characteristics quite accurately even when the
amplitude of currents is as small as 5-10 fA. The statistics of the signal estimated from the processing
technique include the amplitude, mean open and closed duration, open-time and closed-time histograms,
probability of dwell-time and the transition probability matrix. With a periodic interference composed,
for example, of 50 Hz and 100 Hz components, or a linear drift of the baseline added to the segment
containing channel currents and white noise, the parameters of the deterministic interference, such as the
amplitude and phase of the sinusoidal wave, or the rate of linear drift, as well as all the relevant statistics
of the signal, are accurately estimated with the algorithm we propose. Also, if the frequencies of the
periodic interference are unknown, they can be accurately estimated. Finally, we provide a technique by
which channel currents originating from the sum of two or more independent single channels are
decomposed so that each process can be separately characterized. This process is also formulated as a
Hidden Markov Model problem and solved by applying the Expectation Maximization algorithm. The
scheme relies on the fact that the transition matrix of the summed Markov process can be construed as
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a tensor product of the transition matrices of individual processes.

1. INTRODUCTION

Measurement of the elementary ionic currents flowing
through single channels in the cell membrane has been
made possible by the ‘giga-seal’ patch-clamp tech-
nique devised by Hamill et al. (1981). A tight seal
between the rim of the electrode tip and the cell
membrane drastically reduces the leakage current and
extraneous background noise, so enabling the res-
olution of discrete changes in conductances which
occur when single channels open or close. With the
advent of modern digital processing techniques and the
ready availability of computer workstations, it has now
become possible to improve the signal-to-noise ratio by
more than an order of magnitude and extract
information about channel currents which are buried
in the noise and which have hitherto been inaccessible.
Hints already exist in the literature that some channel
currents activated by, for example, glutamate (Jahr &
Stevens 1987; Ascher & Nowak 1988; Cull-Candy &
Usowicz 1989), intracellular second messengers
(Zimmerman & Baylor 1986 ; Premkumar et al. 1990 4),
5-hydroxy tryptophan (Henderson 1990) and GABA
(Premkumar et al. 1990a) are small relative to the
background noise. These microscopic conductance
fluctuations occurring in the noise remain largely
uncharacterized.

We have devised a technique of identifying and
characterizing small channel currents that are ob-
scured by the noise. The methods we propose are based
on the assumptions that the onset and offset of
transmembrane currents can be represented as a finite-
state, first-order, discrete-time, Markov process, and
that the noise that corrupts and obscures the signal is
stochastic, memoryless (white) and Gaussian. With
these assumptions, maximum likelihood estimates of
the signal-model parameters and signal statistics
contained in the observed set of data are derived. In a
previous paper (Chung et al. 1990), we provided a
detailed account of the theoretical basis for signal
processing methods based on Hidden Markov Models
(umm). Its reliability in extracting signals from back-
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ground noise was then shown, by using both known
Markov signal sequences embedded in the noise and
noisy channel currents recorded from cultured hippo-
campal cells. The key to this processing method rests
on the Baum—Welch re-estimation formulae, which are
in turn based on the re-estimation theorems formulated
by Baum et al. (1970). Here we have further refined
and extended our approach to more effectively learn
the discrete state levels, making use of the Expectation
Maximization (EMm) algorithm (Dempster ¢t al. 1977;
Titterington et al. 1985), of which the Baum—Welch re-
estimation formulae are a special case. With the
observations recorded in real experimental situations
in mind, we have considered the case where the
underlying signal is corrupted by, in addition to white
Gaussian noise, a deterministic disturbance of known
form but unknown parameters. These include periodic
disturbances with unknown parameters (frequency
components, amplitudes and phases) and a drift of the
baseline, the form of which we have assumed can be
represented as a polynomial function of time. We
illustrate with simulation examples the techniques
developed in a companion paper (Krishnamurthy et al.
1991 b) which use the Em algorithm to obtain maximum
likelihood estimates of the Markov signal and the
parameters of the deterministic interference.

In §2 of the paper, we briefly outline the theoretical
basis for the HMM processing methods. From a number
of simulation studies, detailed in §3, we show that a
Markov signal of amplitude as low as 1/10 of the
standard deviation of white Gaussian noise can be
characterized accurately with the technique we pro-
pose here. In §4, we show methods for dealing with
records that are likely to be obtained from real
experiments, and which are contaminated, perhaps
unavoidably, by deterministic interferences from the
electricity mains and a slow drift of the baseline. In §5,
we describe a method for decomposing the sum of two
or more single-channel currents contributing to total
current flow.
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2. THEORETICAL BACKGROUND
(a) Overview

The digital signal processing method we use to
characterize the statistics of small channel currents,
known commonly as the Hidden Markov Model
(umMM) technique, was first formulated by Baum and his
colleagues (Baum 1972 ; Baum & Petrie 1966; Baum et
al. 1970) and subsequently applied to a variety of
numerical estimation problems, including speech pro-
cessing (Levinson ef al. 1983), two-dimensional image
processing (Besag 1986; Geman & Geman 1984) and
biological signal extraction (Chung et al. 1990). For
further details on statistical inference for Markov
processes, the reader is referred to Billingsley (1961).

The uMM signal processing techniques are based on
the assumption that the characteristics of the signal we
are interested in characterizing and the background
noise that obscures the signal are different. It is
assumed that the signal can be represented as a
discrete-time, finite-state, first-order, homogeneous,
Markov process, whereas the noise that obscures the
signal is a stochastic process which is white and
Gaussian. Although the processing may not be optimal
for departures from these assumptions, the methods
can quite reliably detect signals that do not conform
precisely to a first-order Markov model with added
white noise (see Chung et al. 1990; Krishnamurthy et
al. 1991a).

Because standard HMM processing techniques are
reviewed expansively elsewhere (Juang 1984 ; Rabiner
& Juang 1986; Rabiner 1989; Chung et al. 1990; see,
in addition, Peters & Walker (1978)), here we give a
brief outline of the theory and list the relevant formulae
without detailed explanations. We formally define the
following notation to be used throughout the paper,
indicating matrices and vectors with bold type:

T Clock time, 1,... k..., T.

N Number of discrete Markov
(conductance) states, 1,2,..., N.

Y, Observation sequence, ¥q, ..., Y, .- Yr

Q Transition rate matrix of continuous-
time Markov chain

i Discrete-time, first-order Markov chain

q =1{¢;} Markov states t = 1,2,..., N

A ={a,} Transition probability from state ¢ to j

b=1b,y,) Probability of observation y, given

that the signal at time £ was at state
i, and called ‘symbol probability’

=, Probability that signal is at state ¢; at
time £ =1

A i Signal model, A = (g, 4, b, m)

Gg» gy A Estimates of ¢;,4,; and A

o, The standard deviation of the white
noise

The following abbreviations are used:
HMM Hidden Markov Model
EM Expectation Maximization
MAP Maximum a posteriori
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(b) Signal model

The model of channel dynamics proposed by
Colquhoun & Hawkes (1977, 1981, 1982) is based on
a finite-state, continuous-time Markov process, where
the state represents the hypothetical conformational
state of the channel macromolecule and the transition
rate matrix of the process is denoted by Q. The states
in this model are aggregated and partitioned into two
classes, namely open and closed states. The underlying
Markov process is not directly observable but some of
its properties can be deduced from the behaviour of
single-channel currents. By fitting exponential func-
tions to the observed distributions of open- and closed-
time histograms, for example, the number of under-
lying conformational states, and the rate constants
from one conformational state to another, each
represented as a continuous-time, two-state, Markov
process, can be deduced. We make the following
assumptions about the Markov process s,.

Discrete-time

Time is discrete. The time index £ belongs to a set of
positive integers. It is convenient to deal with discrete-
time Markov processes embedded in noise. Techniques
for extracting continuous-time Markov processes from
noise are presented in Zeitouni & Dembo (1988), but
the mathematics associated with such techniques is
relatively difficult involving use of the properties of
Wiener processes and Ito stochastic calculus. Because
in practice the experimental record we deal with is
obtained by sampling continuous-time processes, there
is no motivation to add unnecessary mathematical
complexity by working with continuous-time processes.

Finite-state

The finite-state assumption implies that for each £, s,
is a random variable taking on a finite number of poss-
ible values ¢, ¢, ..., ¢x5- Each ¢;, where i =1,2,..., N,
is called a state of the process and s, is termed an
N-state Markov chain. We denote the state space
{¢1,92,---»qn} as q. In the context of channel currents,
the Markov state s, represents the true conductance
level (or current amplitude) uncontaminated by noise
at time £. The observed value y, contains the signal s,
random noise w, and possibly deterministic inter-
ferences p,, such as sinusoidal interferences from
electricity mains and baseline drift. Thus, it is assumed
that the amplitude of true currents at time £ takes on
one of N discrete levels, ¢;, ¢, ... or ¢. The meaning of
‘state’ in our representation differs from that adopted
in the Colquhoun—-Hawkes model but is consistent with
that used in mathematical literature (Kemeny & Snell
1960; Billingsley 1961). The underlying conforma-
tional ‘state’, which is not directly observable from
measurements, does not feature in our scheme.

First-order

The probability of s,,; being in a particular state at
time k+1, given knowledge of states up to time £,
depends solely on the state s, at time £. That is,

Psprr 5159505 5%) = Plsin | p)-
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The transition probabilities of passing from state level
¢; at time k to state level ¢; at time £+ 1, defined as

a;; = Psp = q]~|51c =q,),

form a state transition probability matrix 4 = {a,;},¢ =
1,2,...,N,j=1,2,...,N. Note that 4 is an Nx N
matrix, with its diagonal elements denoting the
probabilities of remaining in the same state at time
k+1, given that the process is found in a particular
state at time k. Extension of the processing schemes
developed to second- or higher order Markov chains is
trivial (see, for example, Krishnamurthy et al. (1991 a)),
although the associated computations are more formid-

able.’

Homogeneous

We assume that the transition probabilities are
invariant of time £. It is easy to extend the techniques
here to semi-Markov processes, in which the transition
probability is a function of the time the process spends
in a particular state. A mathematical description of this
extension is described in Krishnamurthy et al. (1991 a).
Also to characterize a finite-state Markov chain, we
define the initial state probabilities 7 = {m;} where
m = P(s; = ¢,).

We also define the probabilistic function of the
Markov chain, known also as the symbol probability,
as b =b,(y,). In a special case where the noise is
Gaussian,

1 —(y —qi)2
bi(y) = Voo, P ('#— .

Specification of a signal model involves choice of the
number of states N, and their amplitudes or state
levels. Then, transition probabilities from each of N
states to the others, an N X N matrix, need to be
assigned. Moreover, the signal model requires a prior
knowledge of the variance of the noise and the initial
probability distribution. Throughout, we use the
notation A = (g, 4, b, ®) to represent the signal model.

Remarks

(i) Theoretically, the open- or closed-time interval
histogram tabulated from a first-order, discrete-time,
finite-state, homogeneous, Markov chain is distributed
according to a single exponential function. The decay-
time of this exponential function can be deduced from
the transition matrix, or conversely, a Markov chain of
any desired statistics can be generated by specifying the
transition matrix. For simplicity, we have used such
first-order Markov chains to evaluate the processing
scheme we have devised. In practice, however, a finite
length of data segment does not conform strictly to the
first-order Markov statistics. Moreover, interval distri-
butions, especially closed-time distributions, obtained
from real channel currents can best be fitted with two
or three exponential functions. We see later that the
departure from the first-order Markov assumption has
little, if any, effect on the performance of the processing
scheme (§§3¢ and 54). Results of extensive simulations
using signal sequences which are not first-order
Markovian showed that the processing scheme is
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insensitive to deviation from this assumption (see, in
addition, Chung et al. (1990)).

(ii) The transition rate matrix Q of a continuous-
time Markov chain and the transition probability
matrix 4 of a discrete-time Markov chain are related
by the matrix exponential function

A = exp [Q1],

where ¢ is the sampling time. Conversion from one to
the other can be easily obtained, for example, from the
Kolmogorov-Feller equations (Larson & Schubert
1979).

(¢) Baum’s re-estimation theorem

Figure 1 illustrates the processing method schem-
atically. Based on the initial signal model, the
observation sequence, Y., is processed a pre-deter-
mined number of times, and the results of the final
iteration provide the characteristics of the signal
embedded in the noise. These include the estimates of
the time-domain signal sequence s,, signal amplitudes
g, transition matrix A and amplitude probability
distribution among different states £, (figure 1a). The
processing steps involved in extracting the signal are
further elaborated in figure 1 5. The forward-backward
procedure computes three variables, a,f and y, for
each discrete state ¢y,¢,,...,qy, for every clock time,
t=1,2,..., T. (The mathematical definitions and
physical meanings of a, # and y will be stated later.)
Thus, for a segment of data of T points, there will be
NT values of as, fs and ys, where N is the number of
states (discrete conductance states). From the com-
puted values of these three variables, the conductance
states ¢; and the transition probabilities a;; from one
state to another are re-estimated. By using these re-
estimated values, the entire computational procedure
is repeated using the same data, as shown schematically
in figure 15.

The rationale behind this iterative procedure rests
on the re-estimation theorem formulated by Baum and
colleagues (Baum 1972; Baum & Petrie 1966 ; Baum et
al. 1970), which states:

P(Y,|A) = P(Y,|A). (1)

In words, the probability of the observation sequence
Y., given the re-estimated signal model A, is greater
than or equal to the probability of ¥, given the
previous signal model A. Thus, the signal sequence
estimated using a revised model is more consistent with
the data than that estimated using the previous signal
model. When the iterative procedure converges, then
P(Y.|A) = P(Y,|A) and A is termed the ‘maximum
likelihood estimate’ of the HMM.

This re-estimation theorem is fully exploited in the
signal processing scheme we introduce here. As an
illustrative example, we take a fictitious membrane
channel that, when activated, shows three current
(subconductance) levels, at 50, 120 and 190 fA.
Because the small signals are masked by the back-
ground noise, the precise subconductance levels are
unknown to the observer, as are the transition
probabilities from one level to the other. We make
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(@)
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Figure 1. Block diagrams of signal model and the processing method. The model assumed responsible for generation
of recorded single channel currents (¢) and HMM processing method (4) are schematically illustrated. (¢) To a Markov
signal sequence with (conductance) states at ¢,, ..., ¢, with the transition matrix 4, white noise is assumed to be added
to give the observation sequence Y. The aim of the HMM processing is to obtain the maximum likelihood estimates
of the signal sequence s,, Markov states (conductance states) g,, transition matrix 4 and open- and closed-time
histograms h,. (4) On the basis of the initial signal model A, the observations sequence Y, is processed, and three
variables o, £, and v, are computed for each discrete time k£ and each Markov state ¢,. By using these variables, the
parameters of the signal model are revised according to the re-estimation formulae. The entire process is then

reiterated.

initial guesses that the four levels ¢, (where ¢ = 1, 2, 3,
4), including the baseline, are at 0, 100, 200 and 300 fA
and assign a 4 x4 transition matrix 4, with all a;; =
0.88 and a,; = 0.04 (where ¢ # j). The variance of the
noise, calculated from the baseline noise before the
channel was activated, is known. The initial parameter
estimates are updated after each iteration, the updated
parameters are used for the next iteration, and this
process continues until convergence. The statistics of
the signal sequence extracted from the observed data at
convergence are maximum likelihood estimates of the
true signal statistics.

(d) Forward-backward procedures

The mMM techniques are based on two sets of
computational steps, known as the forward—backward
procedures and Baum—Welch re-estimation formulae.
We denote the signal model as A, which specifies the
amplitudes g of N Markov states, the N X N transition
matrix A4, the standard deviation of the noise o, and
the initial distribution probability #. We define the
forward variable « and the backward variable f# as
i) = P(Ypsp = g0, Buli) = P(Tilse = g, ), (2)
where ¥, and ¥, refer to the past observation sequence
T=1,2,...,k, and the future observation sequence
from k41, k+2,..., T, respectively. In words, the
forward variable o, (7) is the joint probability of the
past and present observation with the present signal in
state ¢;, given the model A, and S, (¢) is the probability
of the future observations given that the present state
is ¢; and given the model A.

Phil. Trans. R. Soc. Lond. B (1991)
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Recursive formulae for equation (2) are readily
calculated using Bayes’ Rule as:

o (f) = Ea‘k—l(i) ayb;(yr)s () = m0;(y1)s

Bi() = j§ Ay bj(ylc+l)ﬂk+l(j)> Br(t) =1

The forward wvariable is calculated in a forward
recursion and the backward variable in a backward
recursion, thus the variable names and algorithm
names.

We denote the probability of being in state ¢, at time
k, given the observation sequence Y, and the model A
as ¥,(1), i.e. 7,(1) = P(s, = ;| Yp, A). Then, y,(:) can
be computed from the forward and backward variables
using the formula:

o () B(d)
Vel)) =5 :
2 oy, (2) Bi(0)
i=1
The maximum a posteriori (MAP) state estimate §, at
time £ is
SMAP

Syt = ¢; where j = argmax vy, (7)
1<i<N

1<k T

From the computed as, fs and ps, the relevant
statistics of the Markov signal sequence can readily be
calculated. These include the map signal sequence
estimate, amplitude histograms, transition probability
matrix, open-time and closed-time distributions and
the likelihood function L, as defined by:

2

A
Ly = P(Y|A) =

Plog = g Tl = S i) (3)

.
]
-

Vol. 334. B
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The histogram A, or probability of dwell-time in each
of N discrete states, is calculated as:

T

Vi)

k=1

A

. 1
ha(i) = P(g:| Yp, A) = =

(e) Baum—Welch re-estimation formulae

Because the parameters used for the initial model A
are simply reasonable guesses, the estimates of the
signal statistics based on this model will not coincide
with the model parameters. For the second and
following iterations, we substitute the model para-
meters ¢ and A = {a,;} from the parameters estimated
from the previous iteration. The state level ¢, and the
transition probability a; are re-estimated from the
formulae:

T N
gi= Z 7(0) ylc/ DEAON

=1

T-1 T-1 N o

dif =2 gk(l>])/ 2 X&),
k=1 k=1 j=1

where £,(1,7) = P(s, = ¢4 Spe1 = ¢;1 Y, A). Note that

£(i,j) can be calculated recursively as:

Ec(1)) = o4 (d) 4y (Y1) Bria )/ P(Xp | A).

The above two formulae are known as the Baum-
Welch re-estimation equations. They can be readily
derived by maximizing the likelihood function of the
‘fully categorized’ data (Titterington ef al. 1985) given
in equation A 1 in the Appendix. For example, solving
for 9¢/0d,; = 0 with the constraint that X, a, =1
yields the above re-estimation equation for the transi-
tion probabilities. Similarly, solving for 0§/d¢, =0
gives the re-estimation equation for Markov state
levels.

The proofs that the estimates §; and d,; ultimately
converge to a local maximum of the likelihood function
are given in Baum et al. (1970) and Baum & Petrie
(1966). Once the estimates ¢, are obtained, because the
noise is Gaussian, the re-estimated symbol probabilities
b are easily calculated as:

. 1 —y—d))?
bi(]//c)=\/27m_ exp( (kaUZQ))'

The initial probability distribution # can be similarly
re-estimated, but in the algorithms implemented here
it is not updated. For our application, the statistics of
the final estimates are negligibly influenced by the
values of the initial condition 7, which are nevertheless
needed to initiate the computational procedures.

(f) Elimination of deterministic interferences

The usual sources of deterministic interferences
corrupting the signal are periodic disturbances from
the electricity mains and a slow drift of the baseline
owing, for example, to the development of liquid-
junction potentials. In the Appendix, the re-estimation
formulae are listed for estimating the frequency
components, phases and amplitudes of the periodic
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disturbances, and the coefficients of the polynomial
functions representing the baseline drift. With these re-
estimation formulae, the maximum likelihood esti-
mates of the unknown parameters of the deterministic
interferences are obtained, together with the statistics
of the Markov signal.

(g) Decomposition of multiple channel currents

Let u, and v, be two homogeneous, first-order, finite-
state, Markov processes, with their transition prob-
ability matrices 4, and A,. The subscripts 1 and 2
denote the first and second Markov processes which
are assumed independent. Consider that the observa-
tions y, are obtained as y, = u,+v, +w,, where w, is
white noise. Here we propose a method for obtaining
the transition probabilities and state estimates of u, and
v,, given the observations y,. These estimates are
obtained by first formulating the problem as a two-
vector HMM and then applying HMM processing tech-
niques.

If u, and v, have respectively N, ={p,},1=1,2,...,
Ny, and N, ={g},j=1,2,..., N,, possible states, a
two-vector Markov process can be defined as S, = (u,,
v,), which has N = N, N, states. We denote these states
as Z,,Z,,...,Z,. Given the observations y, and the
two-vector Markov process S,, we define the transition
probabilities 4,, the symbol probabilities 4,,(y,) and
the initial probabilities 7, as:

AT =lpn = P(Slc+1 = anSIc = Zm)>
b=1b,) = Pyl Se = Zy)
_ 1 _<yk*(‘bi+%))2
T V270, P ( 202 ’
T = {ﬂm};ﬂm = P(Sl = Zm))
where Z,, = (p;, ;).
The forward and backward variables a, and f, are
defined similarly as in equation 2, except that there

these variables are now N; X N, matrices. The N; x N,
matrix j, is expressed as:

o, (m) By (m

Volm) = P(S, = Z, 1 Ty, 2) = M)

2 oy (m) By (m)

m=1
where m = (1,7), | << Nj, 1 <j < N,. MAP estimates
of §,,u, and v, are:
Sy =2

k

where m = argmaxy,(n),

1<n<N

m

N,
JMAP __

iy p, where = argmax 22 Yel2)),

1<g<N, j=1
Nl
Zf,IzIAP =4q; where J= argmaxE ’yk(i, /l)
1SRN, =1
The last two formulae stated above are easily justified,
because
N,

X i(8:)) = Plug = 1 Y A).

Jj=1

Thus, argmax vy,(g,¢) is the most probable state of u,
1<h<N,
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given the observations and the model. The same line of
argument applies to the most probable state of v,. The
transition matrix 4, can similarly be estimated using
the Baum—Welch re-estimation formulae:

£,(m,n) = 0, (1) @y Bo(n) b, (Yr)

T
2 &(m,n)
— k=1
mn T

% ve(m)

k=1

a

Because u, and v, are independent, the transition
probability matrix of the vector Markov process §, =
(u,,v,) is the Kronecker (tensor) product of the
transition matrices of «, and v,:4, = A, ® 4,. Once
A, has been estimated using the above equations, 4,
and 4, can readily be obtained.

3. SIGNALS BURIED IN IDEAL NOISE

Before the HMM processing scheme can be applied to
the analysis of biophysical data, its reliability in
extracting known signal statistics and signal estimates
buried in background noise needs to be thoroughly
tested. For background noise, we used a segment of
computer-generated stochastic, Gaussian noise, with
zero mean and o, = 0.1 pA. Unless stated otherwise,
the sampling interval was taken to be 200 us. The
characteristics of this noise closely matched noise from
the output of a patch-clamp amplifier (Axopatch 1C)
with a 10 GQ resistor across the input or a patch of
membrane sealed to the tip of a glass pipette. We have
ascertained that the distribution of this background
noise, filtered at 2 kHz (—3 dB, Bessel), is Gaussian,
with o, =0.099 pA. The power spectrum of the
amplifier noise, determined with the Maximum En-
tropy Method, was relatively flat up to the Nyquist
frequency (see Chung et al. 1990). To simulate channel
currents, we have generated two-state or three-state,
first-order Markov signal sequences of various ampli-
tudes and transition probabilities. Throughout we
express the amplitude of the signal in pA or fA and the
time axis in ms, but these units can readily be converted
to the dimensionless signal-to-noise ratio and sampling
points £ by taking o, as 100 fA and by assuming a
sampling frequency of 5 kHz.

A first-order Markov signal sequence was first added
to the noise, and the characteristics of the signal were
estimated using the HMM processing scheme. Typically,
data segments used for the following simulations
contained 20000 points, representing 4 s of real time
data, and the computations were done using a
workstation computer (Sun IV).

(a) Characterization of a two-state Markov signal

By using two-state, first-order, Markov signal
sequences with transition probabilities a;; = a,, =
0.97, we have ascertained that our processing technique
can determine the amplitudes of the hidden signal with
an acceptable degree of accuracy.

Figure 2 gives the results of one such simulation. To
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a segment of background noise (a), a binary signal
sequence of the amplitude of 25 fA (4) was added to
give the observation sequence (¢). We note here again
that the length of the data processed was 20000 points,
well in excess of the 2000 points illustrated in the
figure. The amplitude probability density distributions
of the noise and the noisy observations could both be
approximated as Gaussian (d and ¢), but the mean of
the latter, as expected, was shifted by 12.5 fA.

In the estimations, we assumed that the variance of
the noise was known and that the underlying signal
was two-state Markovian. We processed the noise trace
containing no signal and the same noise trace to which
a signal sequence was added; the results of simulations
are presented respectively in figure 2f, g. With each
successive iteration, the estimated values of ¢; and ¢,
converged towards the true values. When the ob-
servation sequence contained no signal, the estimated
states after 100, 200 and 800 iterations were, re-
spectively, 5.2 fA and —6.8 fA, 1.3fA and —1.7fA,
and —0.16 fA and —0.31 fA. Because the two esti-
mated states after the last iteration were separated by
1/650 of o,, it can be concluded that the data
contained no Markov signal. With the observation
sequence containing a signal sequence, the estimated
states after 400 iterations were 0.37 fA and —27.6 fA,
close to the true signal levels of 0 and —25 fA. The
estimates of state levels during the first 20 and last 10
iterations are shown in figure 2f, ¢ as dotted lines. The
logarithm of the likelihood functions P(Y,|A) are also
shown as smooth curves. With successive iterations, the
estimates of ¢, and ¢, converged asymptotically to the
levels corresponding to the true states. Also, the
likelihood function rapidly increased and reached a
steady value.

(b) Characterization of a three-state Markov signal

Although single channels typically assume two
conductance states, ‘on’ and ‘oft’, spontaneous chlor-
ide channels (Krouse ¢t al. 1986), channels activated by
neuroactive amino acids (Jahr & Stevens 1987; Cull-
Candy & Usowicz 1989) or intracellular messenger
systems (Zimmerman & Baylor 1986 ; Premkumar et al.
19904, b), among others, show multiple conductance
levels. We show here that our HMM processing scheme
is particularly useful in deducing the kinetics of
channels which exhibit two or more open state current
levels.

We generated a three-state Markov signal sequence,
embedded in noise. The current flow through this
fictitious single channel, when activated, was quantal
in nature, alternating randomly between ‘closed’ (zero
current), ‘partially open’ (—50 fA) and ‘fully open’
(—100 fA) states. The task of the HMM processing
scheme was to uncover the statistics of the hidden
signal. The initial signal model we adopted was one
with five discrete current levels (including the base-
line), at +100, +105, +110, +115 and + 120 fa, with
all a;; = 0.9 and q,; = 0.025. The standard deviation of
the noise was correctly specified to be 0.1 pA. With this
initial model, the sequence of data was processed 50
times.
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Figure 2. Characterization of a binary Markov process. In this and subsequent figures, unless stated otherwise, the
number of data points processed was 20000. Traces of the first 2000 points are plotted for: (a) the noise with
o,=0.1 pA, (b) a two-state Markov signal of amplitude 25 fA, generated according to the transition probabilities
a,; = 0.97, and (¢) the signal embedded in the noise. The distributions of the noise (d) and the signal buried in the noise
(¢)could befitted withGaussiancurves (mean+ o, : —0.23 + 100.2 fAfor (d)and —12.45+ 101.1 fAfor (¢). Thenoisealone
and data containing the signal sequence were processed, and the estimates of the signal amplitude are plotted in
(/) and (g) against successive iterations. It is assumed that the signal is known to be a two-state Markovian. The initial
guesses used for the signal amplitudes and transition probabilities were, respectively, + 100 and —100 fA, and
a;; = 0.9. When the data contained no signal, the estimated amplitudes of the two states coalesced, giving the identical
values (/). When the data containing the signal was processed, the estimated amplitudes of the two Markov states
after 400 iterations were within 10 9%, of the true values (g). Open and closed circles represent the amplitude estimates
of the open state and of closed state. The solid lines drawn in (f) and (g) are the logarithm of the likelihood function.

Phil. Trans. R. Soc. Lond. B (1991)


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Characterization of small channel currents

S. H. Chung and others 365

(@) LAl W A o A A LA U

G

0.5 pA

100 ms
50
(¢)
=z
o
2
i
g
< ’0000..._.
—-100 + toeeen, 90:0:00-0.0-0.0.0-0-0.0-0-0.0-0-0-00-¢
_.150 | | | | |
0 10 20 30 40 50
Iterations
0.4 60
0.3 v A o '
2 B & w0 B
5 0.2 éé é? éé s i?
s Nd ) . A
2 - $ 20 YK
3 - 2 A1/
o 0.1 éé %2 Z% : éi
0o T T i N 7] / ;
—-100 -50 0 0 20

Amplitude [ fA

Duration /[ ms

Figure 3. Characterization of a three-state Markov process. A three-state Markov signal, a portion of which is shown
in (a), was generated according to the transition matrix, a,, = 0.97, ¢, = 0.015. The amplitudes of the three states
were 0, —50 and — 100 fA. The Markov signal embedded in noise (¢) was processed, erroneously assuming that there
were five states. The estimated amplitude of each of the five states is plotted against successive iterations in (¢). The
estimated amplitude of one state was incorrectly identified as +16.5 fA (open circle), but the probability of the signal
being in this state was given as near zero. The estimated amplitudes and probabilities of being in each of the three
states are shown in (d) in the form of a bar graph. The amplitudes and the relative proportions of dwell time of the
original signal are indicated as solid lines. Shown in (¢) are the open-time distributions of the partially open state (solid
line) and the fully open state (broken line), deduced from the estimated transition matrix. The bars show the actual
open-time distributions of the partially open state (filled) and fully open state (hatched) of the original signal.

Sample segments of the signal and of the noise
containing the signal are shown in figure 3a, b. The
estimated amplitudes of the five states attained steady
values by the 30th iteration and remained unchanged
during the remaining 20 iterations (figure 3¢). Two of

Phil. Trans. R. Soc. Lond. B (1991)

the five states coalesced to the baseline level, giving
estimated amplitudes of —0.95 and —0.06 fA. The
estimated signal amplitudes of the two other states at
the final iteration were —54 and —102fA. The
estimated amplitude of the remaining state first
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oscillated and then reached a steady value of +16.5 fA.
That this last state was a false state could easily be
ascertained from a calculation of the probability of the
signal being in this state, namely 2x107% The
probabilities that the original signal was at 0 fA (the
baseline), —50 fA and — 100 fA are depicted in figure
3d, being 0.332, 0.355 and 0.313, whereas the
corresponding estimates from the HMM processing
scheme were 0.346 (49, error), 0.366 (39, error) and
0.287 (99, error), respectively.

The BMM processing scheme also provided the
estimated transition matrix which, omitting the false
state and aggregating the two baseline states, reads:

0.975 0.009 0.016
A={0.190 0.968 0.013
0.013 0.026 0.961

where the first, second and third rows refer to 0 fA (the
baseline), the —50 fA state and the —100 fA state,
respectively.

From this matrix, the distributions of open- and
closed-time histograms, the mean open and closed
durations and the relative likelihood of transition from
one state to the other can be calculated. Theoretically,
open-time (or closed-time) distributions of a signal
sequence generated by such a matrix should be of the
form:

F(d) = a7t (1 —ay), (4)

1

whereas the mean open (or closed) duration are:

o0}
Eld] = X dF(d) = (1—a;,)™".
=1

In the above equations, d is expressed in terms of
digitized points. By using the estimated transition
matrix and equation (4), we computed the open-time
distributions and plotted these in figure 3¢. The solid
line is the estimated open-time distribution at —50 fA
level, whereas the broken line is that at — 100 fA level.
Superimposed on the figure and shown in the form of
bars are the actual open-time distributions tabulated
from the original signal. The filled and hatched bars
are the open-time distribution at —50 fA level and
— 100 fA level, respectively. Because of the short data
segment used for the analysis, the open-duration
distribution of the original signal deviates considerably
from a smooth exponential function. Nevertheless, the
curves calculated from the maximum likelihood es-
timate of the transition probability matrix closely
approximate the original signal characteristics.

In summary, the processing scheme estimated with
an acceptable degree of accuracy the number of states,
their conductance levels, the relative proportion of
times spent in each state, mean open- and closed-time
durations, open- and closed-time histograms and
transition probabilities from one state to the other. If
finer accuracy is required, larger sample path lengths
would be necessary, but these could then be subject to
departures from stationarity of the signal and baseline
drift. Also, we could have increased the number of
iterations at the expense of computational cost, but
with diminishing returns.

Phil. Trans. R. Soc. Lond. B (1991)
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(¢) Identification of small signals

What is the smallest signal our processing methods
can reliably characterize? The answer to this question
depends largely on what we regard as the acceptable
degree of error as well as the computational cost we are
willing to bear. The smaller the hidden signal is, the
larger the uncertainty becomes and the more iterations
are needed to achieve a desired accuracy. In general,
we find that the estimation errors tend to be acceptably
small when the amplitude of the signal is larger than
1/20 of o,, or 5fA. We illustrate here how the
performance of the HMM processing scheme gradually
deteriorates as the amplitude of the hidden signal
decreases.

A two-state Markov signal sequence embedded in
Gaussian noise was analysed. The amplitudes of the
binary signals were —20, —15, —10 and —5 fA; short
segments are displayed in figure 4a—d. The true
probabilities of the dwell-time of the signal in the two
states were 0.492 (baseline) and 0.508, whereas the
noise (figure 4¢) to which the signal was added, as
before, had o, of 100 fA. The estimates obtained are
summarized in the form of histograms in figure 4 /-.
The largest discrepancy between the estimated and
true dwell time was about 109, (figure 4g). The
estimated levels of signals, when the true signal levels
were at 0 and —20 fA, were 0.6 and —21.3 fA (figure
4f). As the signal amplitudes were reduced in steps of
5fA, we obtained estimates of: 1.4 and —15.2 fA
(figure 4¢), 0.1 and —9.8 fA (figure 44) and —1.1 and
—4.3 fA (figure 4¢). From these and a number of other
simulation results, we conclude that the estimation
errors, when a binary signal is separated by 5 fA (1/20
of ¢,) or less, are unacceptably large and thus the
characterization of the signal statistic is beyond the
resolution limit of our HMM processing technique.

We have made similar analyses using three-state
Markov signal sequences, and the results of these
simulations are summarized in figure 5. The signal
amplitudes were reduced successively from —80 and
—40fA to —20 and —10fA (figure 5a—d). The
probabilities of dwell-time in the baseline, partially
open and fully open states were, respectively, 0.33, 0.36
and 0.31, and the noise used had the same statistics as
before (figure 5¢). In figure 5/~ the results obtained
after 800 iterations are summarized in the form of
histograms. For the signal sequence, whose states are
separated by 40 fA, the estimated state levels and their
probabilities of dwell-time closely approximate the
true values (figure 5f). As the signal amplitude
decreased, the magnitudes of errors increased. The
estimates of the dwell-time probabilities in the in-
termediate state were the least reliable, whereas the
estimations of signal amplitude were somewhat more
reliable (figure 5g—1).

(d) Effects of the mean signal duration

The reliability of the ®MM processing scheme
increases as the mean duration of the signal becomes
longer. This is in part due to the fact that errors in the
signal sequence estimation tend to occur at the
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Figure 4. Identification of small binary Markov signals. The amplitude of a binary Markov signal, generated as in
figure 2, was progressively reduced from —20 fA to —5 fA in steps of 5 fA (a, b, ¢, d). A 1000 point segment of signal
with additive noise is shown in (¢). The results of the estimated amplitudes and relative proportions of dwell-time in
each of the two states, after 400 iterations, are presented as bar graphs (f~¢). The solid lines accompanying the
hatched bars are the correct amplitudes and dwell-time probabilities. The initial guesses for the amplitudes of the two
state signal were +100 and — 100 fA, with the transition probability e, = 0.9. The estimated separations between
the closed and open states were —21.9 (true value, —20) fA, —16.6 (—15) fA, —9.9 (—10) fA and —3.2 (—5) fA.

transitions, giving false alarms or misses (Chung et al.
1990). Here we show, however, that the overall
characterization of the signal statistics is relatively
unaffected by the signal durations.

Three-state Markov signal sequences of various
mean durations were generated (figure 6a-d) and

Phil. Trans. R. Soc. Lond. B (1991)

added to Gaussian noise of the same variance as used
in the previous sections. The three states were separated
by 50 fA (0, —50 and —100 fA). The mean duration
of the signal was varied from about 6.7 ms (a;; = 0.97;
figure 6a) to 1.3 ms (a; =0.85; figure 6d). The
estimates of the probabilities of dwell-time and the
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Figure 5. Identification of small three-state Markov signals. Markov signal sequences, three-states equally spaced,
were generated as in figure 3. The amplitude separation between the states was 40 fA (a), 30 fA (4), 20 fA (¢) and
10 fA (d). Each signal sequence was first added to Gaussian noise (¢) and then processed. For the initial model
parameters, the three levels were assumed to be at +25, +50 and + 75 fA, and the transition probability g, = 0.9.
The results shown in the forms of bar graphs (f~) were obtained after 800 iterations. The estimated amplitudes in
fA were: for (f) +1.1 (0), —38.5 (—40), —80.6 (—80); for (g) +0.9 (0), —28.4 (—30), —60.8 (—60); for (A) —2.6
(0), —17.0 (—20), —36.3 (—40); and for () +3.45 (0), —6.3 (—10), —15.1 (—20). The estimation errors tended
to be larger for a three-state Markov process than those for a two-state signal.

signal amplitudes became less accurate as the mean
signal duration decreased (figure 6¢—4). The largest
error in the amplitude identification was 7 fA (figure
64), while the probability of dwell time in the fully
open state was estimated to be 0.27 as opposed to the
true value of 0.32 (figure 6¢). From the estimated

Phil. Trans. R. Soc. Lond. B (1991)

transition probability matrix, we computed the mean
duration at each of the three states and compared these
with the correct mean duration tabulated from the
original signal sequence, as shown in figure 67, where
the estimates are plotted against the true values. In
general, the mean durations tended to be over-
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Figure 6. Effects of the mean duration of the signal on estimation errors. First-order, three-state Markov signal
sequences of a fixed amplitude but varying mean durations were generated and then added to noise. The transition
probabilities a,, used for generating the segments shown in (a-d) were, respectively, 0.97, 0.95, 0.90 and 0.85. The
expected mean durations of all three states for these segments are 6.7 ms, 4.0 ms, 2.0 ms and 1.3 ms. The states were
0, —50 and — 100 fA. The data were iterated 400 times, using the initial guess of the signal amplitudes as +25 fA,
+40 fA and +55 fA. The estimated amplitudes and dwell-time probabilities, corresponding to the signals shown in
(a), (b), (¢) and (d) are presented in (e), (f), (¢g) and (i), respectively. The estimated amplitudes in fA were: for (¢),
+0.8, —50.9, —100.9; for (f), —1.3, —52.7, —103.5; for (g), —1.5, —58.7, —104.1; for (%), +1.0, —42.7, —99.4.
The correct mean durations of the original signals, calculated from the 20000 point signal sequences, are plotted
against the estimated mean durations in (7). The filled circles, crossed circles and open circles represent the closed,
partially open and fully open states, respectively.
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Figure 7. Characterization of a signal sequence that is not first-order Markovian. The signal sequence of two
exponential closed-time interval distribution was generated and processed after embedding it to the noise. The
amplitude of the segment of the original signal (a) was 0.1 pA. The signal was then added to the noise with o, of
0.1 pA (b), from which the MaP estimate of the signal (¢) was obtained. In this and all the subsequent figures, the
sampling frequency was assumed to be 10 kHz. From a 47000 point segment of the estimated signal sequence, the
open- and closed-time interval histograms were constructed (filled circles in ¢ and ¢). Superimposed on the graphs,
plotted in semi-logarithmic scales, are the interval distributions of the original signal (open circles). Displayed in
(f) are short segments of the noise, and signals with amplitudes of 5 fA, 10 fA, 15 fA and 25 fA. By using 20000 points
of these signals contained in the noise, the amplitudes and mean open-times were estimated. The magnitudes of
estimation errors (estimated values—true values) are plotted in (g) against signal amplitude. The filled circles refer
to the estimation errors of the amplitude, whereas the open circles to the estimation errors of the mean open-time.
The results of the last of 800 iterations are illustrated.
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estimated, probably because brief sojourns in other
states, lasting one or two digitized points, were
frequently missed. The overall estimation error was
14.29%,. We have ascertained that the magnitude of
errors systematically decreases as the signal amplitudes
increase and vice versa.

(e) Departure from the first-order Markov model
assumption

In the previous simulations, the signal sequences
used were first-order Markovian. Here we show that
the HMM processing scheme performs satisfactorily even
when the signal sequence embedded in noise is not
strictly first-order Markovian.

At two-state signal sequence was generated such that
its closed-time interval distribution could be fitted with
two exponential functions. The open-time distribution,
on the other hand, was single exponential. A signal
sequence, 47000 points in length and 0.1 pA in
amplitude, was added to the noise (o, = 0.1 pA), and
then MAP estimates were obtained by using the HMM
processing method. Sample segments of the original
signal, the signal in the noise and the corresponding
estimates of the signal are displayed in figure 7a-—c.
From the estimated signal sequence, the open- and
closed-time interval distributions were constructed
(filled circles in figure 74, ¢) and compared with those
obtained from the original signal (open circles in figure
7d,¢). Both open- and closed-time interval distri-
butions obtained from the estimated signal sequence
did not depart appreciably from the true distributions.

By using the same signal sequence of various
amplitudes, we have also assessed the performance of
the HMM processing method in characterizing signal
statistics. In figure 7, short segments of the noise and
51fA, 10fA, 15fA and 25 fA signals are shown. The
error magnitudes in estimating the amplitude and
mean open-time of the signal are plotted against signal
amplitude. When the signal amplitude was successively
reduced from 200 fA to 5fA, the estimation errors
remained fairly constant at about 2 fA (filled circles in
figure 7g). Thus, the fractional error increased as the
signal amplitude decreased. Similarly, the estimates of
the mean open-time (or a,,) increased progressively as
the signal amplitude decreased (open circles in figure
7g). The estimated mean open-time was 3.39 ms
(correct value = 3.33 ms) when the amplitude of the
embedded signal was 200 fA, and the estimated value
decreased steadily to 1.68 ms at 5 fA. Similar trends
were observed for the estimates of the mean closed-time
(not shown here).

From a number of simulations such as the one
illustrated here, we conclude that the HMM processing
scheme is relatively insensitive to the initial assumption
that the underlying signal obeys the first-order Markov
statistics. Thus, our method can be fruitfully applied to
the analysis of typical channel data where the
generating mechanism may consist of several closed or
open conformational modes, of which some have short
lives and some have very long lives.
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4. SIGNALS BURIED IN NON-IDEAL NOISE

Biophysical data are frequently contaminated by, in
addition to random noise, deterministic or non-random
interferences. Among these are the periodic inter-
ferences from the electricity mains, which is very hard
to eliminate completely from experimental environ-
ments, and drift of the baseline, which can be caused
by slow changes in the junction potential between
recording electrodes and the external ionic medium.
Here we show that channel currents corrupted by
periodic disturbances and baseline drift can be readily
extracted and characterized.

(a) Elimination of periodic interferences: low noise

We consider periodic disturbances in time & of the
form X2 _, ¢, sin (v, k+ ¢,,) where the frequency com-
ponents w,, are known but the amplitudes ¢,, and
phases ¢,, are unknown. The periodic interference
used for the following simulations consisted of the
fundamental and its first harmonic. We note that the
theory and the corresponding algorithm we have
developed can handle, with a slight increase in
computational steps, any number of higher harmonics.

The results of the simulation shown in figure 8 are
derived from a segment of data in which the amplitudes
of both sinusoidal interferences and channel currents
are large compared with the background noise. A
binary state Markov signal sequence, 0.2 pA in
amplitude (figure 84), was added to a noise trace that
was contaminated by periodic disturbances. The added
periodic interference (not shown) was of the form
¢y 8N Wy k+¢, sin wy k, with ¢; = ¢, = 0.2 pA and the
two frequency components corresponding to 50 and
100 Hz. From the observation sequence, a short
segment of which is displayed in figure 84, the HMM
processing scheme extracted the maximum likelihood
sequence of the periodic interference (figure 8¢), the
Markov signal sequence contaminated by the noise
(figure 84) and, finally, the maximum likelihood
estimate of the signal sequence (figure 8¢). The original
periodic interference that was added was indistinguish-
able from the estimated sequence shown in figure 8c¢.
The estimated signal sequence displayed in figure 8¢
faithfully mirrors the original signal sequence (figure
8a), with the exception that three brief events lasting
one or two points (100 or 200 ps) were undetected.
From the entire data segment analysed, we constructed
the open-time (figure 8/) and closed-time (figure 8g)
histograms of the original signals (open circles) and
estimated signals (filled circles). The solid lines drawn
through the data were calculated from the estimated
transition matrix, using equation 4. The conspicuous
estimation errors were the failure to detect the brief
channel events.

(b) Elimination of periodic interferences: high noise

The usefulness of our processing technique can be
more convincingly shown than with the previous case
by analysing a data segment in which neither periodic
interferences nor Markov signals are discernible by
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Figure 8. Characterization of a signal sequence buried in sinusoidal interference. A two-state Markov signal of
amplitude 0.2 pA () and a sinusoidal wave composed of 50 and 100 Hz components (not shown) were added to noise
to obtain the observation sequence (). The amplitude of the two frequency components was 0.2 pA (phase = 0). The
initial guesses used to process the data were: signal amplitudes, —0.1 pA and —0.3 pA; ¢, = 0.9; amplitudes of 50
and 100 Hz sinusoids, 0.15 pA, phases, 0.5 radians. The results obtained after 500 iterations are summarized in (¢c—g).
The estimated periodic disturbance, shown in ¢, is indistinguishable from the original sinusoidal interference. The
estimated parameters were 0.20 and 0.199 pA for the amplitudes of the two components, with their phase correctly
given as zero radian. Also shown are the estimated observations sequence in the absence of the sinusoidal interference
but in the presence of Gaussian noise (d) and the estimated signal sequence (¢). The amplitudes of the signal were
estimated to be —2.2 fA and —199.3 fA. Open-time (f) and closed-time (g) histograms were constructed from the
estimated signal sequence (closed circles) and the original signal sequence (open circles). The solid lines drawn
through the points are calculated from the estimated transition matrix.
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Figure 9. Characterization of a Markov signal sequence of small amplitude contaminated by the periodic interference.
The Markov signal sequence (a) was generated by using the same parameters as in figure 7, except its amplitude was
reduced to —25 fA. The periodic interference (5) added to the noise was composed of 50 Hz and 100 Hz, with the
amplitude and phase of both components being 20 fA and 7/4 radian. A segment containing the signal, noise and
sinusoidal interference is shown in (¢). The initial model parameters were: the amplitudes of the signal, +8 fA and
—10 fA; the amplitudes and phases of the two sinusoidal components, 10 fA and 0.5 radian. The successive estimates
of the signal amplitudes and dwell-time probabilities are shown in (d) and (¢), with the correct values indicated by
dashed horizontal lines. The estimates slowly converged to the correct values. The estimated parameters of the
sinusoidal interference, in contrast, rapidly converged to the true values. In (f), the first two estimates and the true
sinusoid, together with the initial guess, are plotted on an expanded timescale.

eye. The amplitudes of the signal sequence (figure 9a) successive estimates of the signal amplitude and the
and of the periodic interferences (figure 95) added to probabilities of being in the open and closed states are
the noise were ; of o,,. From the trace shown in figure shown in figure 94, ¢. The final estimates of the
9¢, the presence of a sinusoidal wave and discrete amplitudes of the two Markov states were 1.1 fA and
Markov signals is not immediately obvious. The —23.9fA, compared with the true values of 0 and

Phil. Trans. R. Soc. Lond. B (1991)


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

374 S. H. Chung and others

Characterization of small channel currents

IRV AVAAVAAVAAVAAVAAVAAVA AV AV

N,
50 | “oogy,
5 r Q000000000
- i
O L
S0 feo
::: -
E.‘ -
E : cos 0000000000
< _50 | .ooo.o””"
L e
‘o/. 1 |
0 10 300
Iterations

d)

Amplitude / fA

0.5 pA

40 ms

25

O'_ """"""""""""""

—-25

' 7

0 10 500

Iterations

Figure 10. Discrimination between a signal sequence and sinusoidal interference. Sinusoidal interference composed
of 50 and 100 Hz components (a) was added to noise to give the observation sequence (). The amplitude of the two
sinusoids, with no phase lag, was 25 fA. The observation sequence (b) was then analysed, erroneously assuming that
it contained a Markov signal sequence. The estimated amplitudes at the first 20 and last 10 iterations are shown in
(¢). The observation sequence was re-analysed, allowing the presence of the periodic disturbance as well as the two-
state Markov signal. The estimated amplitudes of the signal at the first 20 and the last 10 iterations are shown in (d).
The two states were estimated to be identical (0.08 fA separation), indicating that the observation sequence contained

no Markov signal.

25 fA. The probabilities of being in the closed and open
states were estimated to be 0.495 and 0.505, re-
spectively, the correct values being 0.5. The largest
discrepancies between the true and estimated par-
ameters were for the mean closed and open times. The
estimated mean open and closed times, calculated from
the estimated transition probabilities, were 2.89 ms
and 2.58 ms, respectively, whereas the true means for
both were 3.3 ms. In figure 9/, one period of the
original sinusoid is compared with the estimates
obtained at three successive iterations. By the third
iteration, the estimated waveform was very close to the
true one.

(c) Detection of absence of Markov signals

When the HMM processing scheme reveals the
presence of small signals in noise-dominated data, it is
imperative to eliminate the possibility that the detected
signals stem from environmental interferences. In
practice, we find it easy to distinguish between Markov

Phil. Trans. R. Soc. Lond. B (1991)

signals and sinusoidal disturbances. By using the
processing scheme, we illustrate here how a detected
signal can be correctly attributed to the underlying
sinusoidal wave that is buried in the noise.

A periodic wave composed of two sine waves, 50 Hz
and 100 Hz, of equal amplitude (25 fA) was added to
the noise. Sample segments of the periodic wave alone
and the noise containing this wave are shown in figure
10a, b. The results of the analysis with the HMM
processing scheme under the erroneous assumption
that no periodic disturbances were present are shown
in figure 10¢. The amplitudes of three levels were
identified to be —0.2fA (baseline), +38.3 and
—35.3 fA, with the probabilities of occupying these
states being, respectively, 0.44, 0.26 and 0.30. The
approximate symmetry of the signal amplitudes above
and below the baseline renders it unlikely that such a
signal sequence could be biological in origin. This
assertion also can be readily confirmed by examining
the power spectrum of the data. A spectrum obtained
from the first 2000 points, not shown here, using the
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Figure 11. Estimation of the frequency of sinusoidal interference together with other relevant parameters. A 50 Hz
sinusoidal wave with amplitude 20 fA and phase of 7/4 rad (a) and a signal sequence with amplitude —25 fA (b) were
added to noise to give the observation sequence (¢). The amplitude spectrum, obtained by performing a zoom FrT
at the resolution of 0.1 Hz on the first 2048 point of the data, gave a broad peak centred at 49.7 Hz (d), the magnitude
error of which was unacceptably large (0.6 %,). The observation sequence was analysed with the processing scheme.
The relative likelihood obtained after the first iteration is plotted against the frequency in (e). At this stage, the global
maximum occurred at 49.94 Hz. The estimated frequency after 500 iterations was 49.99 Hz. The initial guess and the
first estimate for the sinusoidal interference, together with the sinusoid which was initially embedded in the noise, are
shown in (f) on an expanded time scale. The estimated amplitudes of the signal at the first and last ten iterations
are shown in (g).
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Figure 12. Extraction of a Markov signal in the presence of a steady baseline drift. A two-state Markov signal sequence
with amplitude 0.2 pA (a) was added to Gaussian noise which drifted linearly downwards at a rate of 1.35 pA s™.
From the observation sequence (4), the statistics of the signal, its maximum a posterior: sequence estimate (¢), and the
constant of the drift were estimated. The open-time and closed-time histograms of the original signal sequence (open
circles) and estimated signal sequence (filled circles) are shown in (d) and (¢). The solid lines drawn through the data
points are calculated from the estimated transition probabilities.

Maximum Entropy Method, revealed two prominent
peaks, one at 50 Hz and the other at 100 Hz, indicating
that the data were contaminated by the periodic
disturbances. The correct answers emerged when the
analysis allowed the presence of the periodic dis-
turbance (figure 104). The estimated amplitude of the
Markov signal was near zero (0.025 fA), showing that
no signal was present. The amplitudes of the two
sinusoids were estimated to be 26.6 fA and 25.6 fA, as
compared with the true values of 25fA. Their
estimated phases were 0.032 and —0.037 radians, close
to the true values of zero.

(d) Re-estimation of the frequencies of the
sinusoids

Although the frequency of the electricity mains,
which is the primary source of periodic disturbances in
electrophysiological recordings, does not in general
depart appreciably from 50 Hz, it is nevertheless
desirable to devise a scheme whereby the exact
interfering frequencies can be found adaptively. By
using the formulae given in the Appendix (equations

Phil. Trans. R. Soc. Lond. B (1991)

A 3-A'5), we have re-estimated the frequency of the
periodic interference, in addition to the other relevant
parameters of the Markovian signal.

Added to the noise were a 50 Hz sinusoidal wave of
amplitude 20 fA and phase 7/4 radian (figure 11a)
and a binary Markov signal sequence, the two states
being separated by 25 fA (figure 1154). When added to
the noise, the presence of the periodic interference and
the signal were not apparent (figure 11¢). Assuming
that the frequency, amplitude and phase of the periodic
interference are unknown, along with the amplitude
and characteristics of the Markov signal, we estimated
these unknown parameters using the algorithm imple-
mented according to equation A5 given in the
Appendix. In high noise, estimates of the frequency
components of the periodic disturbance obtained by a
zoom Fast Fourier Transform (rrr) on the data are not
sufficiently accurate, as shown in figure 11d. A zoom
FrT performed on the first 2048 point data at 0.1 Hz
resolution shows a broad amplitude spectrum with a
broad peak centred at 49.7 Hz. In contrast, the
algorithm we implemented provided an unambiguous
estimate of the frequency, amplitude and phase of the
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Figure 13. Characterization of small signals in the presence of baseline drift. A two-state Markov signal sequence with
amplitude 25 fA (a) was added to noise which drifted linearly downward at a rate of 250 fA s™'. Shown in (b) are two
short segments of the observation sequence, the second trace being taken 1 s after the first. Estimates of the amplitude
and probabilities of dwell-time at the first 20 and last 10 iterations are shown in (¢) and (d). Dotted lines represent
the true values. The pa shift in the results, we believe, is due to a small deviation from zero in the mean of the

computer-generated noise from zero.

underlying periodic disturbance. The initial guess for
the frequency was 25 Hz. The re-estimated frequency
after the first iteration, as shown in figure 11e, was
49.94 Hz. Here, the ordinate is the normalized likeli-
hood of the periodic disturbance at each discrete
frequency (equation A 5). With each successive iter-
ation, the estimated parameters of the periodic dis-
turbance improved, slowly approaching the correct
values. This is illustrated in figure 11/, where the first
two cycles of the initial guess, the first re-estimate,
together with the original periodic disturbance, are
reproduced. The estimated amplitude, frequency and
phase of the periodic disturbance after 500 iterations
were, respectively, 21.29 (20) fA, 49.99 (50.0) Hz and
0.62 (0.785) radian. The numbers in the parenthesis
are the true values. The estimated amplitudes of the
signal sequence, shown in figure 11g, also approached
the true values. The final estimates of the two state
levels were —0.7 fA and —25.7 fA, as compared with
the true values of 0 and —25fA. The transition

Phil. Trans. R. Soc. Lond. B (1991)
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probability estimates were a;; = 0.968 and a,, = 0.969.
The true probability for a,; used to generate the
original signal was 0.97.

(e) Adjustment of baseline drift: low noise

The level of the baseline in an experimental situation
frequently drifts either slowly away from the starting
point or abruptly steps to a new level and then returns
to the original level. The second type is difficult to deal
with, as it is not always possible to ascertain whether
such a stepwise change represents an artefactual drift
or a channel opening to one of its subconductance
levels. A slow, erratic and continuous drift of the
baseline, on the other hand, is unambiguous to the
experimenter and can be easily eliminated with our
processing method. We have incorporated the scheme
whereby such a drift, if it exists, is adaptively corrected
and provides the estimates of the channel statistics
taking the unsteady baseline into account (equation

Vol. 334. B
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A 2). In the following two examples, we assumed for
simplicity that the baseline drifts downwards linearly
in time. We note, however, the processing technique
we devised is for the general form of drift that can be
represented by a polynomial function of time.

To a binary Markov signal sequence contained in
the noise, a downward drift of 1.35 pAs™ was
introduced. The amplitude of the Markov signal,
0.2 pA, was twice that of o,. Sample segments of the
signal and noisy signal are exhibited in figure 124, b.
By using the HMM processing scheme, we estimated the

‘rate of drift, as well as all the relevant statistics of the :

signal embedded in the steadily drifting noise. The
‘estimated drift rate, after 1000
1.3496 pA s7t. The two Markov states were estimated
to be at +0.001 and —0.1995 pA, compared with the
true values of 0 and —0.2 pA. The estimated prob-
abilities of being in the open and closed states were 0.51
and 0.49, compared to the correct values of 0.5. The
magnitudes of these estimation errors are within the
acceptable range for most biophysical applications. A
segment of the estimated signal sequence is shown in
figure 12¢. In the 2000 point segment illustrated, the
processing scheme failed to detect three events, all brief
openings or closings lasting 100 ps. In figure 124, ¢, we
constructed the open- and closed-time histograms of
the original signal sequence (open circles) and esti-
mated signal sequence (filled circles). The solid lines
fitted through the data points are calculated from the
estimated transition matrix, according to equation 4.

(f) Adjustment of baseline drift: high noise

A binary Markov signal sequence of 25fA in
amplitude (figure 134) was added to the noise, which
was drifting linearly downward at the rate of 250 fA s™".
The initial 1000 point record and the same length of
the segment taken s later are shown in figure 13 b.
With the processing scheme, we iteratively estimated
the amplitude, transition probability and relative
occupancy probability of the Markov signal as well as
the rate of drift. In figure 13¢, the estimates of the
signal amplitude are plotted against successive itera-
tions. The final estimates of the signal levels were
+1.63fA and —22.5 fA, compared with the true
values of 0 and —25 fA. The probabilities of being in
each of the two states were estimated to be 0.495 and
0.505, giving 19, errors. The estimated transition
probabilities, a,, and a,,, were both 0.967, the correct
values being 0.97. Finally, the rate of drift was
estimated to be 251.4 fA s7%.

5. DECOMPOSITION OF TWO
INDEPENDENT CHANNELS

One of the problems often encountered in single
channel recordings is that more than one channel is
contained in an isolated patch of the membrane.
Moreover, when a current trace shows multiple levels,
it is sometimes difficult to determine whether different
levels represent the subconductance states of a single
channel or independent openings and closings of two or
more single channels contained in the patch. With
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these problems in mind, we have devised a processing
scheme with which we can decompose a record
containing two or more single channels which open
and close independently of each other.

Simulations, not presented here, showed that if the
amplitudes of the two or more independent Markov
chains were identical, the estimates of the individual
chain was not as accurate as when their amplitudes
were different. For example, let us consider the case
when two Markov chains are present. Suppose both
Markov chains have state level 0 and 1. Then the sum
of the two chains is a process with three levels at 0, 1
and 2. In such a case, the state level 1 is ambiguous
because it could have occurred with the first chain at
level 1 and the second at 0 or vice versa. It is this
ambiguity together with the finite data length which
degrades the performance. However, if the transition
probabilities of the two chains are significantly dif-
ferent, then the effect of the state ambiguity is
diminished and the estimates of the statistics of the
chain improve.

(a) Two Markov chains in ideal noise

A signal sequence, a 2000 point segment of which is
shown in figure 144, was generated by adding two
Markov signal sequences of different amplitudes and
different transition matrices. This summed signal
sequence was then embedded in noise (figure 146).
From the noisy record it is not immediately obvious
whether the underlying signals represent the algebraic
sums of two independent single channels or single
channel events showing multiple conductance levels.
Assuming erroneously, for the first instance, that
underlying the signal sequence was an N-state, first-
order Markov process, we obtained its characteristics
by using the standard processing method. The results
of the analysis correctly revealed that there were four
current levels, in fA at 0.1 (0.0), 199.9 (200), 297.9
(300) and 500.1 (500) with the relative occupancy
probabilities of 0.625, 0.298, 0.063 and 0.024, re-
spectively. The numbers in the parentheses are the true
levels. A cursory inspection of the 4 x4 transition
matrix made it apparent that the record contained the
activities of two independent channels. The first and
fourth row of the estimated transition matrix read:
(0.97, 0.02, 0.01, 0) and (0, 0.10, 0.05, 0.85), showing
that the transitions from the baseline to the highest
state or vice versa did not occur. In other words, the
probability of two independent channels opening or
closing precisely at the same instant was zero. Similarly,
both a,; and a;, were close to zero.

Once it is known that two independent Markov
signal sequences are contained in the record, the
summed signal sequence can be readily decomposed to
individual signal sequences, and the characteristics of
each sequence can be obtained. Clearly, in such a case
the combined transition matrix A,, the subscript T
denoting tensor, will be a tensor product of two
matrices, 4, and A,. The processing technique we have
devised provides the estimates of 4, and two Markov
signal sequences. The original signal and estimated
signal sequences of the first Markov process are shown
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Figure 14. Decomposition of two independent Markov
signals. A segment of the signal sequence (), obtained by
adding two independent Markov signals, was combined with
noise. The signals were generated according to the transition
matrices, a,; =0.98 and a,, = 0.95 for the first Markov
process, and a,; = 0.99 and a,, = 0.90 for the second. Their
respective amplitudes were 0.2 pA and 0.3 pA. From the
statistics obtained for the combined signals, it could be
ascertained that the signal sequence embedded in the noise
represented the sum of two independent Markov processes
(see text). By using vector HMM processing, the signal sequence
was decomposed into its constituents. Displayed are short
segments of the original signal sequence of the first process (¢)
with its estimated sequence (d), and the original signal
sequence of the second process (¢) with its estimated sequence

)-

in figure 14¢, d, and the corresponding segments of the
second Markov process are shown in figure 14¢, f. The
estimation errors occurred, as expected, predominantly
with brief events, which were either missed or
incorrectly assigned. The estimated A, was de-
composed into two matrices representing the transition
probabilities of the first and second signal sequences:

4 - 0.968 0.032 2 0.987 0.013
710.053 0.947 0.103 0.897)

The true matrices used to generate the original signals
were: a,; = 0.98, a,, =0.95 for the first signal se-
quence, and a;; = 0.99, a,, = 0.90 for the second signal
sequence. (Note: the decomposition of a tensor product
into its constituent matrices is in general not unique
but the solution with the restriction $¥;a; =1 is
unique.)

The results illustrated in figure 15 show that the
channel currents emanating from two single channels
can be decomposed with an acceptable degree of
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Figure 15. Increasing estimation errors with decreasing
amplitudes of two independent Markov processes. Two
signal sequences were generated according to the transition
probabilities, a,; = 0.98 and a,, = 0.98 for the first sequence
(@) and a,; = 0.99 and a,, = 0.95 for the second sequence ().
The amplitudes of the signals were systematically reduced,
and after adding them to noise, the observation sequence was
analysed as detailed in figure 14. The results of two such
simulations are illustrated. The trace shown in (¢) contains
the two-state Markov processes with amplitudes of 0.15 pA
and 0.225 pA. The decomposed signal sequences of the two
processes are shown in (d) and (¢), corresponding to the
original signal sequences shown in (a) and (b). In trace (f),
the same signal sequences were added to noise, except that
their amplitudes were now reduced to 0.1 pA and 0.175 pA.
The decomposed signal sequences are shown in (g) and ().
Further reductions in signal amplitudes caused progressively
larger estimation errors.

accuracy even when their amplitudes are small relative
to the noise. Two signal sequences, shown in figure
15a, b were first added and then embedded in the
noise. By using the same procedures as in figure 14, the
summed signals were extracted from the noise and
decomposed into two individual sequences. The ampli-
tudes of the two signal sequences shown in figure 15¢
were 0.15 pA and 0.225 pA. The estimated signal
sequences are shown in figure 154, e. When the signal
amplitudes were further reduced to 0.1 pA and
0.175 pA, the estimated signal sequences (figure 15 g, #)
from the noisy data (figure 15/) contained significantly
more errors than the previous example.

(b) Two Markov chains in non-ideal noise

To mimic real experimental data, we have generated
a noisy record, albeit somewhat exaggerated, that
contained a signal sequence which was not first-order
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Figure 16. Two independent Markov chains buried in non-
ideal noise. Two Markov processes were added and em-
bedded in the noise. Then, a harmonic wave of the form
£p(0) = ¢, sin (0 k+7/2) ¢, sin (wyk+7/4), with ¢ =
0.2 pA, ¢, = 0.1 pA, w, and w, corresponding respectively to
50 Hz and 150 Hz, and a linear drift of 0.5 pAs™ were
added. The amplitudes of the first and second Markov
processes were, respectively, 0.15 pA and 0.2 pA. The first
process, a first-order Markov, was generated with the
transition probability matrix of a;; = 0.99 and a,, = 0.95,
whereas the second process, not first-order Markovian, was
the same signal sequence used for figure 7. The first 500 ms
and 50 ms of the record are shown in (¢) and (). In (¢),
segments of the original harmonic wave (upper trace) and
the estimated wave (lower trace) are displayed. After
eliminating the harmonic wave and baseline drift, the signal
contained in the noise was decomposed into two constituent
processes. Segments of the first (d) and second (f) signal
sequences are compared with the corresponding segments of
the estimated sequences (¢ and g).

Markovian, and a smaller background signal sequence
which opened and closed independently of the first
chain. The simulated experimental record was heavily
contaminated by interferences from the power line,
composed of 50 Hz and 150 Hz, with different ampli-
tudes and phases. In addition, the baseline was rapidly
drifting downwards.

In figure 164, b, the first 500 ms and 50 ms of the
record are shown. The task of our fully implemented
HMM processing method was to parcel out the in-
terfering deterministic components, characterize the
combined signal sequence, and then decompose it into
two independent chains. The original sinusoidal wave
added to the record is shown in figure 16¢, together
with the estimated wave directly below it. The two
traces are indistinguishable when superimposed on the
timescale used. Similarly, the rate of baseline drift was
correctly estimated (not shown here). The processing
method identified that the signal assumed, in addition

Phil. Trans. R. Soc. Lond. B (1991)

Characterization of small channel currents

Table 1. Estimates of the parameters of the deterministic
interferences and of the statistics of the embedded Markov
chains

true values estimated values

sinusoidal components

amplitude of 50 Hz/fA 200 201.4

phase of 50 Hz/deg 90 88

amplitude of 150 Hz/fA 100 100.2

phase of 150 Hz/deg 45 40
rate of drift/(fA s71) 500 497.3
first Markov chain

amplitude/fA 150 155.3

mean open-time/ms 2 2.37
second Markov chain

amplitude/fA 200 201.7

mean open-time/ms 3.33 3.08

to the baseline, three discrete amplitudes at 0.15 pA,
0.2 pA and 0.35 pA. But the transition from the
baseline to the 0.35 pA level or vice versa did not
occur, indicating that the signal sequence originated
from the sum of two independent chains. The MM
processing scheme then decomposed the combined
signal sequence into two independent chains. The
sample segments illustrated in figure 16d—g are the
original (4 and f) and estimated (¢ and g) signal
sequences of the first and second chain.

The estimates of the parameters of the deterministic
interferences and of the statistics of the embedded
Markov chains were acceptably accurate. These are
summarized in table 1.

Faced with a set of imperfectly determined measure-
ments, such as the one shown in figure 164, the
experimenter may be tempted to discard the data and
embark upon a costly and time-consuming process of
repeating the measurements. With the advent of
modern digital signal processing techniques, which
unlike conventional filters utilize all prior knowledge
about the signal and unwanted random and patterned
disturbances, useful information can be gleaned from
such a real world process.

6. DISCUSSION
(a) Hidden Markov Models and Expectation
Maximization algorithm

The BMM signal processing techniques we have
studied and tested extensively can be satisfactorily
applied, but their application is not limited to, in
extracting and characterizing small transmembrane
channel currents buried in background noise. The
currents recorded during an experimental situation are
not only corrupted by unavoidable random noise but
also they are frequently contaminated by periodic
disturbances originating from the electricity mains,
composed of a fundamental 50 Hz frequency and odd
harmonics, as well as baseline drift. The processing
methods described in this paper yield estimates of these
deterministic interferences, as well as all the relevant
statistics of the underlying signal. Moreover, we have
described a method for decomposing two or more
independent Markov chains embedded in the noise.
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When the open state of a channel exhibits multiple
conductance levels, it is important to determine
unambiguously whether the signal sequence represents
an N-state Markov process or an algebraic sum of two
or more independent Markov processes.

In devising the signal processing techniques, we have
first formulated the problems in the framework of an
HMM, and then applied the Em algorithm (Dempster et
al. 1977; Titterington et al. 1985) to obtain the
maximum likelihood estimates. We note here that
there are alternative numerical methods for calculating
the maximum likelihood estimates. One approach we
have considered, and rejected for the reasons given
below, is the Newton—Raphson algorithm which when
it converges does so quadratically and thus rapidly.
The Em algorithm, on the other hand, converges
linearly, and so convergence can be very slow.
However, with the Newton—Raphson algorithm, the
computational steps involved tend to be complicated
and the memory requirements to obtain the estimates
are large, especially since the Hessian matrix needs to
be inverted. Moreover, successive iterations with the
Newton—Raphson algorithm do not necessarily im-
prove the likelihood function. In contrast, the Em
algorithm is simple to implement and satisfies the
appealing property that the likelihood function is
always improved after each iteration.

We have extensively tested the reliability of the
algorithms we implemented in characterizing Markov
signals buried in the noise. With ideal noise, which is
white, Gaussian and contains no extraneous determin-
istic inferences, it was possible to characterize a Markov
process whose levels were separated by 1/20 to 1/10 of
the standard deviation of the noise (figures 4 and 5).
The standard deviation of the noise from a patch-
clamp amplifier with the tip of an electrode pipette
tightly sealed with a membrane patch, when filtered at
2 kHz, is about 0.1 pA (0.2 pA when filtered at 5 kHz).
Under these conditions, channel currents whose ampli-
tudes are as low as 5 to 10fA can be adequately
characterized.

Unless there is an unambiguous method of dis-
tinguishing the recording artefacts from the real signal,
the processing scheme we detailed in §3 will have
limited biological application. The real electro-
physiological data invariably contain, in addition to
biological signals and amplifier noise, other recording
artefacts, the most prominent of which is the periodic
interference from the power line. This sinusoidal wave
consists of, for obvious reasons, the fundamental and its
odd harmonics, predominantly 50, 150 and 250 Hz.
Notch filtering or a generalized notch filtering ap-
proach (Paiss 1990) has a considerable transient
response and thus obscures and distorts the embedded
Markov signal. The processing schemes we have
formulated for eliminating the sinusoidal interference,
as well as the baseline drift, fully exploit all the a prior:
information available: the nature of the deterministic
disturbances, the Markovian characteristics of the
signal and the presence of white, Gaussian noise. In
this sense, the processing can be said to be optimal in
that maximum likelihood estimates are obtained. The
reliability of the processing schemes in characterizing
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the parameters of the deterministic interferences,
together with those of the embedded Markov chain, is
demonstrated in §§4 and 5. In practice, when
reasonable care is taken to minimize interference from
the mains, the amplitudes of the residual sinusoids
present in the records are of the order of 20-50 fA for
50 Hz, 150 Hz and 250 Hz.

(b) Signal models and underlying assumptions

The processing methods we have detailed are based
on two key assumptions. The noise corrupting the
signal is Gaussian and white (memoryless), and the
underlying signal is a first-order, finite-state, discrete-
time, Markov process. The violation of the whiteness of
the noise assumption severely degrades the perform-
ance of the processing scheme, whereas the departure
from the first-order Markov assumption does not affect
the estimates of the signal statistics appreciably. Thus,
even with a signal sequence that is second- or higher-
order Markovian, or a periodic step change occurring
at a fixed interval, the extracted signal sequence and
the estimates of its associated statistics are acceptably
accurate. In contrast, in using this or any processing
methods based on the HMM techniques and the Em
algorithm, care must be taken to ensure that the noise
spectrum is flat up to the Nyquist frequency. For
further discussion on the subject, see Chung et al.
(1990).

In the same theoretical framework of HMM techniques
and the EM algorithm, the signal model can be further
modified and extended, so making the signal processing
schemes far more versatile than those described here.
Instead of assuming that channel currents are gener-
ated by a first-order Markov process, we can represent
the signal sequence as m-ary Markovian. The most
general form of the signal model is one with time-
varying transition probabilities, known also as discrete-
time, semi-Markov processes. Here, the transition
probability, instead of being constant, is an unknown
function of the time after the process made a transition
to or from a given state (time to the last transition).
The fractal model, postulated by Liebovitch and
colleagues (1987, 1989) is a special case of this
generalized representation. A brief mathematical de-
scription of this extension is described elsewhere
(Krishnamurthy et al. 1991 a). Also, a Markov process,
after entering one of its states, can be allowed to decay
back in time exponentially or otherwise to the original
state. Such a signal process was formulated as an
augmented homogeneous HMM problem and a scheme
for estimating this stochastic process, when its realiza-
tions is hidden in noise, has been devised (Krishna-
murthy & Moore 1991). In this context, we note that
techniques for estimating filtered Markov processes
with additive noise are presented in Goutsias & Mendel
(1988).

(¢) Computational and memory requirements

The drastic increase in the signal-to-noise ratio
attained with the HMM processing scheme must be
weighed against the computational cost. In the
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forward—backward scheme, the number of computa-
tional steps involved is of the order of N* T, where N is
the number of Markov states and 7 is the number of
data points, while the memory requirements are
O(NT). Typically, we analyse about a 100000 point
record using less than ten allowed states. Although a
large number of computational steps are involved, the
processing cost and time, we feel, are negligible
compared with those expended for data acquisition.
Because a modern workstation computer can perform
about 25 million instructions per second, the real time
involved in processing such a record, once the codes are
optimized, will be of the order of minutes. It may be
possible to increase the speed of processing using
similar techniques to those suggested by Peters &
Walker (1978). They propose a method of improving
the convergence of EM when the embedded data is from
an ‘independently and identically distributed’ process,
that is, the process when aj; =ay,=..=ay. It
remains to be investigated if it is possible to improve
convergence similarly when the embedded process is
Markov.

The re-estimation procedures developed in this
paper are off-line. The entire sequence of observations
is required for off-line processing and also the memory
requirement O(NT) can be large. In addition, the
estimates of the transition probabilities and signal
levels are updated only at the end of the iteration. It is
of interest to develop on-line processing schemes which
update the transition probabilities and state levels at
each time instant when a new observation is available.
Such procedures could be constructed to significantly
reduce memory requirements. Titterington (1984) has
developed on-line techniques when the embedded data
is from an ‘independently and identically’ distributed
process. We are currently developing on-line schemes
for HMM processing. Such on-line schemes could also be
used for eliminating periodic interferences with slowly
varying frequencies, amplitudes and phases.

(d) Concluding remarks

One important use of our processing methods which
we have alluded to but not specifically addressed is the
evaluation of signal models (Rabiner & Juang 1986;
Rabiner 1989). Conventionally, the distribution of
open-time or closed-time histograms, accumulated
from a relatively long segment of data, has been used
to discriminate between different models (see, for
example, Sansom et al. (1989)), but associated with this
method are several obvious disadvantages (Liebovitch
1989; McManus ¢t al. 1989). Given the observation,
what is the most likely signal model? The same
segment of the data can be analysed by using different
signal models, and comparing the likelihood functions,
as given in equation 3. Theoretically, the best model,
or the model that is most consistent with the
observation, is the one which gives the highest value of
the likelihood function. Such a mathematical tool for
discriminating unambiguously a class of plausible
models from implausible ones may prove to be useful
for the understanding of the molecular mechanisms
underlying channel openings. If the analysis of channel
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currents is motivated by a model that is inadequate,
the effort expended in deriving its parameters or
kinetic constants may turn out to be futile. Moreover,
characterization of channel currents which are at least
an order of magnitude smaller in amplitude and more
brief in duration than those amenable for analysis with
conventional methods may ultimately provide a new
insight into the dynamics of protein macromolecules
forming ionic gates in living membranes.

This work was in part supported by a grant from the
National Health and Medical Research Council of Australia.
Throughout the course of this study, Mrs Jennifer Edwards
provided excellent technical assistance, for which we are
grateful.

APPENDIX
Re-estimation formulae for eliminating
deterministic interferences

We briefly summarize some of the results derived in
a companion paper by Krishnamurthy et al. (19915).
We stress that the re-estimation equations presented
here are not strictly based on the EM algorithm.
Consider the observation sequence Y, which contains
an N-state Markov signal sequence, the periodic
disturbance of the form 3% ¢, sin (w,k+¢,,), or a
drift in the states of the Markov process in the form of
the polynomial 3}2_; 4, " and additive white Gaussian
noise. Unknown are the amplitudes ¢, of the Markov
states and their transition probabilities 4;, the ampli-
tudes ¢,, an the phases ¢, and the constant 4, of the
drift. The problem is to obtain the maximum likelihood
estimates of these unknown parameters. The solution of
this problem involves the Em algorithm, an iterative
algorithm consisting of the Expectation step and the
Maximization step (Dempster et al. 1977).

Let p,(0), ® € R®, with unknown parameter vector
O = (0,,...,0,), denote a deterministic disturbance,
either a periodic or polynomial drift disturbance or
both. The expectation of the log of the likelihood
function {(A, A) of the ‘fully categorized data’ (Titter-
ington et al. 1985) may be expressed as:

n N N T-1 N
$AA) = 2 X X (i) log dy+ X v,(1) log 71, + &,
i=1j=1 k=1 =1
where (A1)
T-1 N . l
G= X Zoi)los g = A
(4= (4, +1:(0)))?
Xexp(_ & Q&ik( Y

The Maximization step involves finding A to maxi-
mize {(A,A). Now we consider polynomial (drift) and
periodic (sinusoidal) disturbances. Solving for @, in
0¢,/0d, = 0,for® = (dy,...,d,)and p, (@) = T2_, d, k",
it can be shown that the re-estimation formulae for
the polynomial drift constants are the solutions of the

# equations which are linear in d,

»

T N
Y2y (=G k= 2 p(O) k", n=1,...,p.
k=11i=1 n=1

(A2)
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For @ = (c},...,c,,¢y,...,8,) and p(O)=3%7_,
¢y Sin (0, k+¢,), the amplitude estimates are ob-
tained as:

b =
T N F B

Z () (yk_éi_ X Gy sin (wmk+¢m))

k=1i=1 m=1

m#n

sin (w, k+¢,)

T A
Y sin® (w,k+¢,)
k=1

(A3)
Similarly, the phase estimate ¢,, is obtained by solving:

M, cos qgm + M, sin gzgm = N, cos 2g2§m+ N, sin 2g5m,

(A4)
where
T N
M, =3 X v()
k=1n=1
p A
(1= 2 osin k) ) cos (0,6
m#n
T N
My=—2% 2 (1)
k=1n=1
D " .
X (yk_é1_ z En sin (wnk+¢n>) sin (wmk):
m#n
T PR
N, =23 sin2w,k; N,=-2% cos 2w,k
2 o1 2,5

In the above results, it was assumed that the
frequencies of the sinusoids are precisely known. If the
frequency components are also to be estimated, the
parameter vector to be estimated is @ = (cy,...,¢,,
Brreees Py 01, ..., ). Again, the maximum likelihood
estimate w of w = (wy,...,w,) is obtained by solving:

|

SU(6) = S by cos (G k+G) =ik sin (206, k+ )

k

14 A A
—k S &, sin (O, k+¢,) cos (G k+,) =0, (A5)
n=1

n#m

where

N
b, = k(yk— > v,.(0) (jl) and &= (0,,...,0,)".
i1
Equation (A 5) can be solved numerically by using, for
example, the Newton—Raphson method.
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